Interferometric Plasmonic Lensing with Nanohole Arrays.
نویسندگان
چکیده
Nonlinear photoemission electron microscopy (PEEM) of nanohole arrays in gold films is used to map propagating surface plasmons (PSPs) launched from lithographically patterned structures. Strong near-field photoemission patterns are observed in the PEEM images, recorded following low angle of incidence irradiation of nanohole arrays with sub-15 fs laser pulses centered at 780 nm. The recorded photoemission patterns are attributed to constructive and destructive interference between PSPs launched from the individual nanoholes which comprise the array. By exploiting the wave nature of PSPs, we demonstrate how varying the array geometry (hole diameter, pitch, and number of rows/columns) ultimately yields intense localized photoemission. Through a combination of PEEM experiments and finite-difference time-domain simulations, we identify the optimal array geometry for efficient light coupling and interferometric plasmonic lensing. We show a preliminary application of inteferometric plasmonic lensing by enhancing the photoemission from the vertex of a gold triangle using a nanohole array.
منابع مشابه
Optimized Design of Nanohole Array-Based Plasmonic Color Filters Integrating Genetic Algorithm with FDTD Solutions
Recently, significant interest has been attracted by the potential use of aluminum nanostructures as plasmonic color filters to be great alternatives to the commercial color filters based on dye films or pigments. These color filters offer potential applications in LCDs, LEDs, color printing, CMOS image sensors, and multispectral imaging. However, engineering the optical characteristics of thes...
متن کاملEnhanced optical transmission mediated by localized plasmons in anisotropic, three-dimensional nanohole arrays.
This paper describes three-dimensional (3D) nanohole arrays whose high optical transmission is mediated more by localized surface plasmon (LSP) excitations than by surface plasmon polaritons (SPPs). First, LSPs on 3D hole arrays lead to optical transmission an order of magnitude higher than 2D planar hole arrays. Second, LSP-mediated transmission is broadband and more tunable than SPP-enhanced ...
متن کاملMillimeter-Sized Suspended Plasmonic Nanohole Arrays for Surface-Tension-Driven Flow-Through SERS
We present metallic nanohole arrays fabricated on suspended membranes as an optofluidic substrate. Millimeter-sized suspended nanohole arrays were fabricated using nanoimprint lithography. We demonstrate refractive-index-based tuning of the optical spectra using a sucrose solution for the optimization of SERS signal intensity, leading to a Raman enhancement factor of 107. Furthermore, compared ...
متن کاملHybrid Magnetoplasmonic Crystals Boost the Performance of Nanohole Arrays as Plasmonic Sensors
We present here a theoretical study that shows how the use of hybrid magnetoplasmonic crystals comprising both ferromagnetic and noble metals leads to a large enhancement of the performance of nanohole arrays as plasmonic sensors. In particular, we propose using Au−Co−Au films perforated with a periodic array of subwavelength holes as transducers in magnetooptical surface-plasmon-resonance sens...
متن کاملBottom-up fabrication of nanohole arrays loaded with gold nanoparticles: extraordinary plasmonic sensors.
A chemical route to periodic hole arrays in gold films whose holes are loaded with single gold nanoparticles is presented, paving the road to mass production of highly sensitive plasmonic sensors on large areas.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry letters
دوره 5 24 شماره
صفحات -
تاریخ انتشار 2014